Tandem trimer pyrrole-imidazole polyamide probes targeting 18 base pairs in human telomere sequences.

نویسندگان

  • Yusuke Kawamoto
  • Asuka Sasaki
  • Kaori Hashiya
  • Satoru Ide
  • Toshikazu Bando
  • Kazuhiro Maeshima
  • Hiroshi Sugiyama
چکیده

The binding of molecules to specific DNA sequences is important for imaging genome DNA and for studying gene expression. Increasing the number of base pairs targeted by these molecules would provide greater specificity. N-Methylpyrrole-N-methylimidazole (Py-Im) polyamides are one type of such molecules and can bind to the minor groove of DNA in a sequence-specific manner without causing denaturation of DNA. Our recent work has demonstrated that tandem hairpin Py-Im polyamides conjugated with a fluorescent dye can be synthesized easily and can serve as new probes for studying human telomeres under mild conditions. Herein, to improve their selectivities to telomeres by targeting longer sequences, we designed and synthesized a fluorescent tandem trimer Py-Im polyamide probe, comprising three hairpins and two connecting regions (hinges). The new motif bound to 18 bp dsDNA in human telomeric repeats (TTAGGG) n , the longest sequence for specific binding reported for Py-Im polyamides. We compared the binding affinities and the abilities to discriminate mismatch, the UV-visible absorption and fluorescence spectra, and telomere staining in human cells between the tandem trimer and a previously developed tandem hairpin. We found that the tandem trimer Py-Im polyamide probe has higher ability to recognize telomeric repeats and stains telomeres in chemically fixed cells with lower background signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere Visualization in Tissue Sections using Pyrrole–Imidazole Polyamide Probes

Pyrrole-Imidazole (PI) polyamides bind to specific DNA sequences in the minor groove with high affinity. Specific DNA labeling by PI polyamides does not require DNA denaturation with harsh treatments of heat and formamide and has the advantages of rapid and less disruptive processing. Previously, we developed tandem hairpin PI polyamide probes (TH59 series), which label telomeres in cultured ce...

متن کامل

Synthetic pyrrole-imidazole polyamide inhibits expression of the human transforming growth factor-beta1 gene.

Pyrrole-imidazole (Py-Im) polyamides can bind to the predetermined base pairs in the minor groove of double-helical DNA with high affinity. These synthetic small molecules can interfere with transcription factor-DNA interaction and inhibit or activate the transcription of corresponding genes. In the present study, we designed and synthesized a Py-Im polyamide to target -545 to -539 base pairs o...

متن کامل

Effects of the A.T/T.A degeneracy of pyrrole--imidazole polyamide recognition in the minor groove of DNA.

Pairing rules have been developed to predict the sequence specificity of minor groove binding polyamides containing pyrrole (Py) and imidazole (Im) amino acids. An Im/Py pair distinguishes G.C from C.G and both of these from A.T/T.A base pairs. A Py/Py pair appears not to distinguish A.T from T.A base pairs. To test the extent of this degeneracy, the affinity and binding orientation of the hair...

متن کامل

Extension of Sequence-Specific Recognition in the Minor Groove of DNA by Pyrrole-Imidazole Polyamides to 9-13 Base Pairs

The sequence-specific recognition of the minor groove of DNA by pyrrole-imidazole polyamides has been extended to 9-13 base pairs (bp). Four polyamides, ImPyPy-Py-PyPyPy-Dp, ImPyPy-G-PyPyPy-Dp, ImPyPyâ-PyPyPy-Dp, and ImPyPy-γ-PyPyPy-Dp (Im ) N-methylimidazole, Py ) N-methylpyrrole, Dp ) N,Ndimethylaminopropylamide, G ) glycine, â ) â-alanine, and γ ) γ-aminobutyric acid), were synthesized and c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chemical science

دوره 6 4  شماره 

صفحات  -

تاریخ انتشار 2015